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Gravitational waves production from stellar
encounters around massive black holes
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Abstract. The emission of gravitational waves from a system of massive objects interact-
ing on elliptical, hyperbolic and parabolic orbits is studied in the quadrupole approximation.
Analytical expressions are then derived for the gravitational wave luminosity, the total en-
ergy output and gravitational radiation amplitude. A crude estimate of the expected number
of events towards peculiar targets (i.e. globular clusters) is also given. In particular, the rate
of events per year is obtained for the dense stellar cluster at the Galactic Center.
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1. Introduction

Gravitational waves are generated by dynam-
ical astrophysical events, and they are ex-
pected to be strong enough to be detected
when compact stars such as neutron stars (NS)
or black holes (BH) are involved in such
events. In particular, coalescing compact bi-
naries are considered to be the most promis-
ing sources of gravitational radiation that can
be detected by the ground-based laser interfer-
ometers.Advanced optical configurations capa-
ble of reaching sensitivities slightly above and
even below the so-called standard-quantum-
limit for a free test-particle, have been de-
signed for second and third generation GW de-
tectors. A laser-interferometer space antenna
(LISA) (10−4 ∼ 10−2Hz) might fly within the
next decade. It is important in order to predict
the accurate waveforms of GWs emitted by ex-
treme mass-ratio binaries, which are among the
most promising sources for LISA. To this aim,
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searching for criteria to classify the ways in
which sources collide is of fundamental impor-
tance. A first rough criterion can be the classi-
fication of stellar encounters in collisional as in
the globular clusters and in collisionless as in
the galaxies J.Binney et al. (1987). A funda-
mental parameter is the richness and the den-
sity of the stellar system and so, obviously, we
expect a large production of GWs in rich and
dense systems. Systems with these features are
the globular clusters and the galaxy centers. In
particular, one can take into account the stars
(early-type and late-type) which are around the
Galactic Center, Sagittarius A∗ (S grA∗) which
could be very interesting targets for the above
mentioned ground-based and space-based de-
tectors. In recent years, detailed information
has been achieved for kinematics and dynam-
ics of stars moving in the gravitational field
of such a central object. The statistical prop-
erties of spatial and kinematical distributions
are of particular interest. Considering a field of
resolved stars whose proper motions are accu-
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rately known, one can classify orbital motions
and deduce, in principle, the rate of produc-
tion of GWs according to the different types of
orbits. This work is motivated by a classifica-
tion of orbits in accordance with the conditions
of motion, we want to calculate the GW lumi-
nosity for the different types of stellar encoun-
ters. A similar approach has been developed
in S. Capozziello and M. De Laurentis (2008)
but, in that case, only hyperbolic trajectories
have been considered. In this report we in-
vestigate the GW emission by binary systems
considering bounded (circular or elliptical) and
unbounded (parabolic or hyperbolic) orbits.
We expect that gravitational waves are emit-
ted with a ”peculiar” signature related to the
encounter-type: such a signature has to be a
”burst” wave-form with a maximum in cor-
respondence of the periastron distance. The
problem of bremsstrahlung-like gravitational
wave emission has been studied in detail by
Kovacs and Thorne by considering stars inter-
acting on unbounded and bounded orbits. In
this report, we face this problem discussing
in detail the dynamics of such a phenomenon
which could greatly improve the statistics of
possible GW sources.

2. Orbits in stellar encounters

Let us take into account the Newtonian the-
ory of orbits since stellar systems, also if at
high densities and constituted by compact ob-
jects, can be usually assumed in Newtonian
regime. We give here a self-contained sum-
mary of the well-known orbital types in order
to achieve below a clear classification of the
possible GW emissions. We refer to the text
books J.Binney et al. (1987); L. Landau et al.
(1973) for a detailed discussion.A mass m1 is
moving in the gravitational potential Φ gener-
ated by a second mass m2. The vector radius
and the polar angle depend on time as a con-
sequence of the star motion, i.e. r = r(t) and
φ = φ(t). the total energy and the angular mo-
mentum, read out
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and defining, as standard, the auxiliary variable
u = 1/r, Eq. (1) takes the form

u′2 + u2 − 2γµ
L2 u =

2µE
L2 (4)

where u′ = du/dφ and we have divided by
L2/2µ. Differentiating with respect to φ, we get

u′
(
u′′ + u − γµ

L2

)
= 0 (5)

hence either u′ = 0, corresponding to the cir-
cular motion, or

u′′ + u =
γµ

L2 (6)

which has the solution

u =
γµ

L2 + C cos (φ + α) (7)

or, reverting the variable,

r =

[
γµ

L2 + C cos (φ + α)
]−1

(8)

which is the canonical form of conic sections
in polar coordinates. The constant C and α are
two integration constants of the second order
differential equation (6). The solution (8) must
satisfy the first order differential equation (4).
Substituting (8) into (4) we find, after a little
algebra,

C2 =
2µE
L2 +

(
γµ

L2

)2
(9)

and we get C2 ≥ 0. This implies the
four kinds of orbits given in Table I (see
(S. Capozziello and M. De Laurentis 2008)).
Circular motion correspond to
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Table 1. Orbits in Newtonian regime classified
by the approaching energy.

C = 0 E = Emin circular orbits
0 < |C| < γµ

L2 Emin < E < 0 elliptic orbits
|C| = γµ

L2 E = 0 parabolic orbits
|C| > γµ

L2 E > 0, hyperbolic orbits

r0 = − γ

2Emin
. (10)

Elliptic motion

r =
l

1 + ε cos φ
(11)

where ε =

√
1−l
a is the eccentricity of the el-

lipse and l is semi-latus-rectum of the ellipse.
Parabolic and Hyperpolic motion correspond
to

1 + ε cos φ > 0 (12)

This means cos φ > −1, i.e. φ ∈ (−π, π) and the
trajectory is not closed any more. For φ→ ±π,
we have r → ∞. The curve, with ε = 1, is
a parabola. For ε > 1, the allowed interval of
polar angles is smaller than φ ∈ (−π, π), and
the trajectory is a hyperbola. Such trajectories
correspond to non-returning objects.

3. Gravitational wave

At this point, considering the orbit equa-
tions, we want to classify the gravitational
radiation for the different stellar encounters
(C. W. Misner et al. 1973). Direct signatures
of gravitational radiation are its amplitude and
its wave-form. In other words, the identifica-
tion of a GW signal is strictly related to the ac-
curate selection of the shape of wave-forms by
interferometers or any possible detection tool.
Such an achievement could give information
on the nature of the GW source, on the propa-
gating medium, and , in principle, on the gravi-
tational theory producing such a radiation. It is

well known that the amplitude of GWs can be
evaluated by

h jk(t,R) =
2G
Rc4 Q̈ jk , (13)

R being the distance between the source and
the observer and { j, k} = 1, 2, where Qi j is the
quadrupole mass tensor.

Qi j =
∑

a

ma(3xi
ax j

a − δi jr2
a) (14)

Here G being the Newton constant, ra the mod-
ulus of the vector radius of the a − th parti-
cle and the sum running over all masses ma
in the system.We now derive the GW ampli-
tude in relation to the orbital shape of the bi-
nary systems.As an example, the amplitude of
gravitational wave is sketched in Fig. 1 for a
stellar encounter close to the Galactic Center.
The adopted initial parameters are typical of a
close impact and are assumed to be b = 1 AU
and v0 = 200 Kms−1, respectively. Here, we
have fixed M1 = M2 = 1.4M�. The impact pa-
rameter is defined as L = bv where L is the
angular momentum and v the incoming veloc-
ity. We have chosen a typical velocity of a star
in the galaxy and we are considering, essen-
tially, compact objects with masses compara-
ble to the Chandrasekhar limit (∼ 1.4M�). This
choice is motivated by the fact that ground-
based experiments like VIRGO or LIGO ex-
pect to detect typical GW emissions from the
dynamics of these objects or from binary sys-
tems composed by them.

4. Rate and event number
estimations

An important remark is due at this point.
A galaxy is a self-gravitating collisionless
system where stellar impacts are very rare
(J.Binney et al. 1987). From the GW emission
point of view, close orbital encounters, colli-
sions and tidal interactions should be dealt on
average if we want to investigate the gravita-
tional radiation in a dense stellar system as we
are going to do now.

Let us give now an estimate of the stellar
encounter rate producing GWs in some inter-
esting astrophysical conditions like a typical
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Fig. 1. The gravitational wave-forms from el-
liptical orbits shown as function of the polar
angle φ. We have fixed M1 = M2 = 1.4M�. M2
is considered at rest while M1 is moving with
initial velocity v0 = 200 Kms−1 and an impact
parameter b = 1 AU. The distance of the GW
source is assumed to be R = 8 kpc and the ec-
centricity is ε = 0.2, 0.5, 0.7.

globular cluster or towards the Galactic Center
after we have discussed above the features dis-
tinguishing the various types of stellar encoun-
ters. Up to now, we have approximated stars
as point masses. However, in dense regions
of stellar systems, a star can pass so close to
another that they raise tidal forces which dis-
sipate their relative orbital kinetic energy. In
some cases, the loss of energy can be so large
that stars form binary or multiple systems; in
other cases, the stars collide and coalesce into
a single star; finally stars can exchange grav-
itational interaction in non-returning encoun-
ters. To investigate and parameterize all these
effects, we have to compute the collision time
tcoll, where 1/tcoll is the collision rate, that is,
the average number of physical collisions that
a given star suffers per unit time. For the sake
of simplicity, we restrict to stellar clusters in
which all stars have the same mass m. Let us
consider an encounter with initial relative ve-
locity v0 and impact parameter b. The angular
momentum per unit mass of the reduced parti-
cle is L = bv0. At the distance of closest ap-
proach, which we denote by rcoll, the radial ve-
locity must be zero, and hence the angular mo-
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Fig. 2. The gravitational wave-forms for a
parabolic encounter as a function of the polar
angle φ. As above, M1 = M2 = 1.4M� and M2
is considered at rest. M1 is moving with ini-
tial velocity v0 = 200 Kms−1 with an impact
parameter b = 1 AU. The distance of the GW
source is assumed at R = 8 kpc. The eccentric-
ity is ε = 1.

mentum is L = rcollvmax, where vmax is the rel-
ative speed at rcoll. From the energy equation
(1), we have

b2 = r2
coll +

4Gmrcoll

v2
0

. (15)

If we set rcoll equal to the sum of the radii of
two stars, then a collision will occur if and only
if the impact parameter is less than the value of
b, as determined by Eq.(15).

Let f (va)d3va be the number of stars per
unit volume with velocities in the range va +
d3va. The number of encounters per unit time
with impact parameter less than b which are
suffered by a given star is just f (va)d3va times
the volume of the annulus with radius b and
length v0, that is,
∫

f (va)πb2v0d3va (16)

where v0 = |v − va| and v is the velocity of
the considered star. The quantity in Eq.(16) is
equal to 1/tcoll for a star with velocity v: to
obtain the mean value of 1/tcoll, we average
over v by multiplying (16) by f (v)/ν, where
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Fig. 3. The gravitational wave-forms for hyper-
bolic encounters as function of the polar an-
gle φ. As above, we have fixed M1 = M2 =
1.4M�. M2 is considered at rest while M1 is
moving with initial velocity v0 = 200 Kms−1

and an impact parameter b = 1 AU. The dis-
tance of the source is assumed at R = 8 kpc.
The eccentricity is assumed with the values
ε = 1.2, 1.5, 1.7 .

ν =
∫

f (v)d3v is the number density of stars
and the integration is over d3v. Thus

1
tcoll

=
ν

8π2σ6

∫
e−(v2+v2

a)/2σ2

(
rcoll |v − va| + 4Gmrcoll

|v − va|
)

d3vd3va (17)

We now replace the variable va by V =
v − va. The argument of the exponential is then

−
[(

v − 1
2 V

)2
+ 1

4 V2
]
/σ2, and if we replace the

variable v by vcm = v − 1
2

V (the center of mass
velocity), then we have

1
tcoll

=
ν

8π2σ6
∫

e−(v2
cm+V2)/2σ2

(
rcollV +

4Gmrcoll

V

)
dV .(18)

The integral over vcm is given by
∫

e−v2
cm/σ

2
d3vcm = π3/2σ3 . (19)

Thus

1
tcoll

=
π1/2ν

2σ3

∫ 0

∞
e−V2/4σ2

(
r2

collV
3 + 4GmVrcoll

)
dV (20)

The integrals can be easily calculated and
then we find

1
tcoll

= 4
√
πνσr2

coll +
4
√
πνGmrcoll

σ
. (21)

The first term of this result can be derived
from the kinetic theory. The rate of interac-
tion is νΣ 〈V〉, where Σ is the cross-section and
〈V〉 is the mean relative speed. Substituting
Σ = πr2

coll and 〈V〉 = 4σ/
√
π (which is appro-

priate for a Maxwellian distribution whit dis-
persion σ) we recover the first term of (21).
The second term represents the enhancement in
the collision rate by gravitational focusing, that
is, the deflection of trajectories by the gravita-
tional attraction of the two stars.

If r∗ is the stellar radius, we may set rcoll =
2r∗. It is convenient to introduce the escape

speed from stellar surface, v∗ =

√
2Gm

r∗
, and

to rewrite Eq.(21) as

Γ =
1

tcoll
= 16

√
πνσr2

∗

(
1 +

v2
∗

4σ2

)
=

16
√
πνσr2

∗(1 + Θ), (22)

where

Θ =
v2
∗

4σ2 =
Gm

2σ2r∗
(23)

is the Safronov number (J.Binney et al. 1987).
In evaluating the rate, we are considering
only those encounters producing gravitational
waves, for example, in the LISA range, i.e.
between 10−4 and 10−2 Hz . Numerically, we
have

Γ ' 5.5 × 10−10
( v
10kms−1

) (
σ

UA2

)

(
10pc

R

)3

yrs−1 Θ << 1 (24)
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Γ ' 5.5 × 10−10
(

M
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)2 ( v
10kms−1

)

×
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σ

UA2

) (10pc
R

)3

yrs−1 Θ >> 1 (25)

If Θ >> 1, the energy dissipated exceeds
the relative kinetic energy of the colliding stars,
and the stars coalesce into a single star. This
new star may, in turn, collide and merge with
other stars, thereby becoming very massive. As
its mass increases, the collision time is shorten
and then there may be runaway coalescence
leading to the formation of a few supermas-
sive objects per clusters. If Θ << 1, much of
the mass in the colliding stars may be liberated
and forming new stars or a single supermassive
objects.

Note that when we have the effects of
quasi-collisions in an encounter of two stars in
which the minimum separation is several stel-
lar radii, violent tides will raise on the surface
of each star. The energy that excites the tides
comes from the relative kinetic energy of the
stars. This effect is important for Θ >> 1 since
the loss of small amount of kinetic energy may
leave the two stars with negative total energy,
that is, as a bounded binary system. Successive
peri-center passages will dissipates more en-
ergy by GW radiation, until the binary orbit
is nearly circular with a negligible or null GW
radiation emission. Let us apply these consid-
erations to the Galactic Center which can be
modelled as a system of several compact stellar
clusters, some of them similar to very compact
globular clusters with high emission in X-rays.

For a typical compact stellar cluster
around the Galactic Center, the expected event
rate is of the order of 2 × 10−9 yrs−1 which
may be increased at least by a factor ' 100 if
one considers the number of globular clusters
in the whole Galaxy eventually passing nearby
the Galactic Center. If the compact stellar clus-
ter at the Galactic Center is taken into account
and assuming the total mass M ' 3 × 106

M�, the velocity dispersion σ ' 150 km s−1

and the radius of the object R ' 10 pc (where

Θ = 4.3), one expects to have ' 10−5 open or-
bit encounters per year. On the other hand, if
a cluster with total mass M ' 106 M�, σ '
150 km s−1 and R ' 0.1 pc is considered, an
event rate number of the order of unity per year
is obtained. These values could be realistically
achieved by data coming from the forthcoming
space interferometer LISA. As a secondary ef-
fect, the above wave-forms could constitute the
”signature” to classify the different stellar en-
counters thanks to the differences of the shapes
(see the above figures).

5. Concluding remarks

We have analyzed the gravitational wave
emission coming from stellar encounters in
Newtonian regime and in quadrupole approx-
imation. In particular, we have taken into ac-
count the expected luminosity and the strain
amplitude of gravitational radiation produced
in tight impacts where two massive objects of
1.4M� closely interact at an impact distance of
1AU. Due to the high probability of such en-
counters inside rich stellar fields (e.g. globular
clusters, bulges of galaxies and so on), the pre-
sented approach could highly contribute to en-
large the classes of gravitational wave sources
(in particular, of dynamical phenomena capa-
ble of producing gravitational waves). In par-
ticular, a detailed theory of stellar orbits could
improve the statistic of possible sources.
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